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:Fourier transform methods are derived for the correction of collimation errors due to infinite slit- 
heights in small-angle scattering. The methods are applicable to an arbitrary intensity distribution 
and have a simple form in the case of a spherically symmetrical distribution. The eorreetion is 
performed by two successive transforms, the first of which yields a Fourier transform of the 'true' 
intensity distribution. 

The effect of finite slit heights is discussed and an approach to a correction for this error 
is indicated. 

1. Introduction 

Primary beams with cross sections which are not 
point-like are currently used in small-angle scattering 
in order to increase the intensity yield. The resulting 
intensity distributions are, in most cases, considerably 
different from those which would be obtained from 
a point-like cross section of the primary beam and the 
recalculation of the 'true' intensity distribution is 
thus a common task. 

:From a mathematical point of view the problem 
can be formulated as a deconvolution (Hosemann, 
1951; Kranjc, 1954) which suggests the applicability 
of Fourier-transform methods. For infinite beam 
heights, however, direct methods can be used which 
have been described by Du Mend (1947) and Guinier 
& Fournet (1947) for a spherically symmetrical 
intensity distribution and by Syne5ek (1962) for an 
arbitrary one. For a spherically symmetrical intensity 
distribution combined with a finite be.am height, 
a method has been given by Kratky, Pored & Kahovec 
(1951). 

Unfortunately, these methods are rather tedious 
and not very practical for numerical computation. 
The present work shows how Fourier-transform 
methods can be applied to these problems. 

2. A r b i t r a r y  intensity distribution and 
infinite beam height 

Let I(s) be the intensity distribution near the origin 
of reciprocal space, s the reciprocal space vector 
(s=2 sin 0/2). Let I be normalized so that  its three- 
dimensional Fourier transform (38) yields. 

~3(/(s)) = ~*~(r)/e*2(0)= r(r)  
y 'characteristic function' (Pored, 1951, 1952) 

electron density distribution 

r real space vector 

~,2 = I,~(y)Q(r+y)dvy (self-convolution of ~) 
~8 = I,exp (2zirs)dvs dvs volume element in 

reciprocal space 

I t  is permissible in small-angle scattering work to 
put sin 0 ~ O, so that  the Ewald sphere can be replaced 
by a tangent plane through the origin at right angles 
to the direction of the primary beam. Let s be 
represented in a rectangular system of coordinates 
by its components sl, s2 and s8 where sl and s2 lie 
in the tangent plane and are the components of a 
vector slo.. For a given direction of the primary beam 
the measurable values of I are thus I(s12), which 
represent a two-dimensional section of I(s) (Fig. l(a)). 

The effect of the non-zero dimensions of the cross 
section of the primary beam together with that  of 
the receiving slit of the counter or, if film techniques 
are used, the photometer slit, are conveniently repre- 
sented by a 'measure distribution' h(sle) (Fig. l(a)), 
which is obtained by convoluting the 'shape function' 
of the primary beam (hp) with that  of the measuring 
slit system (hM). 

h = h p . h M  . 

If the method of integrating along lines at right 
angles to the direction of scanning described by 
Syne~ek (1960) is used in order to increase the effective 
slit height, the path of the receiving slit has to be 
considered in hM, 

According to Hosemann (1951) and Kranjc (1954), 
the measured intensity distribution J is given by 

J(s~2) = I(sl~) ,h(s12). 

We now assume that  the experimental conditions 
chosen are such that  the measure distribution h 
can be regarded as irrfinite and constant in the direc- 
tion of s~. and infinitely narrow in the direction of sl 
and can therefore be represented by 

h(s~) = ~(sx). [l](s~.) 
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l~ig. 1. Posi t ional  corre la t ion be tween  the  ' t rue '  in tens i ty  
d is t r ibut ion  I and  the  measure  d is t r ibut ion  h as func t ion  
of the  direct ion of scanning s~. 

(5 Dirae delta distribution 
[1] distribution having the value unity for all values 

of the argument. 

(The term 'distribution' is used in this paper in the 
sense given by Schwartz, 1950). 

If measurefnents are made in the direction of sl 
only, one finds 

J(s~) = [Z(sl~).(~(s~).[1](s~))](sl) 

= I(slp) ds~ 
--(X) 

= {[Z(s)l~)l(s~) (1) 

[ ]2 two-dimensional section through the origin, 
{ }1 one-dimensional projection. 

The intensity measured along sl is thus the projec- 
tion of a two-dimensional section of I(s) onto sl. 

Application of the theorems on the Fourier trans- 
forms of sections and projections leads to 

~ ( J ( s l ) )  = [{7(r)}4~ (rl) 
{ }9. two-dimensional projection 
[ It one-dimensional section through the origin. 

Since I(s) is at  least centrosymmetrieal, J(sl) is 
an even function so that  

f 
o e  

~ l (J ( s l ) )  = 2 J(81) cos 2z~rlsld81. 
0 

We now define an arbitrary direction in the two- 
dimensional section of I(s) by the angle ~ relative 
to sl (Fig. l(b)). If the sample is rotated through the 
angle ~ the direction of scannirtg becomes s¢ and 
the measure distribution h(T~.s19.), where Tv is the 
tensor 

( c o s ~ o s i n ~ ) .  
T ~ =  -sin~ocos~o ' 

then 
J(s~) = {[I(s)]2}l(s~) 
~l(J(s~)) = [{7(r)}~]~(r~) 

By varying ~ from 0 to g, all possible one-dimen- 
sional projections of [I(s)]2 are obtained. Their 
corresponding Fourier transforms are one-dimensional 
sections of {7(r)}~ and can therefore be used to 
reconstruct this function. 

In principle, the procedure can be terminated at  
this point, since all the information contained in 
[I(s)]~. is present in {7(r)}~.. 

If, however, the ' true'  intensity distribution is 
required, it  can be obtained by an inverse Fourier 
transform: 

[Z(s)l~. = i ~  1 {r (r )}2 .  

Since 7(r) is centros~ymmetrical, 

i ~  ~{r(r)}2 = l {7(r)}~ cos 2~r12s12da12 
G 

dale. surface element in the plane defined by rl  and rg.. 

3. S p h e r i c a l l y  s y m m e t r i c a l  in tens i ty  
d i s t r ibut ion  and inf inite  b e a m  he ight  

If I(s) has spherical symmetry equation (1) becomes 

J(8)= {[1(8)1~}1. (2) 
There are two possible ways of obtaining l(s)  

from (2). If  one proceeds as in the general case one 
finds 

~l(J(s ) )  = [{~(,))211 

F ~1(J(8/)  = 2 J ( 8 / c o s  2~r8 d s .  (3) 
0 

Since 7 ( r ) i s  spherically symmetrical, {7(ri}2 has 
radial symmetry and is thus completely defined by 
one section through the origin: 

The inverse transform yields: 

~-~1 {7(r)}2=[i(s) lp=i(s)  " (4) 

Here again the two-dimensional section defines I(8) 
completely. 
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Because of the radial symmetry of {?(r)}% its two- 
dimensional Fourier transform is given by a Fourier- 
Bessel transform: 

0 

Jo Bessel function of the first kind of zero order. 
The second way is perhaps of more interest since 

it leads directly to ~,(r) in the first step. Reconsidering 
equation (1), one finds: 

I(s~.) ds2 {[z(s)l~.}~ = - ~  

- - -  S 8 8  

\ ~)--CO 183----0 

= [{I(s))q~ 

which means that  the one-dimensional projection of 
[I(s)]~. equals the one-dimensional section of {I(s)}2; 
this holds in the general case only, when the planes 
of the section and of the projection are mutually 
perpendicular. 

In the case of a spherically symmetrical intensity 
distribution {I(s)}2 is radially symmetrical and is 
thus completely defined by one section through the 
origin; this allows the following development" 

J(s)={I(s)}e 
~(J(s)) = [7(r)]~ = ?(r) 

A Fourier-Bessel transform of J(s) thus yields ?(r) 
directly. The 'true' intensity distribution is then 
obtained by 

i~(~(~)) =z(~) 

r~,(r) sin 2~rs dr.  (6) 
lf~(~(r)) = ~ o 

4.  F i n i t e  b e a m  height  

In this case the measure distribution is defined by 

h(s~) = ~(sl). q(s~) 

where q(s~.) is a symmetrical distribution determining 
the finite extensi0n of h in the direction s~. 

Equation (1) becomes accordingly 

J(s~) = [[/(s)12 ,(~(s~). q(s~))l~ 
= {[Z(s)l~. ([1](s~). q(s~))}~. 

Fourier transformation yields 

~(J(s~))  = [  {7(r)}~, (~(rl). Q(r~))l~ 

where Q=~i(q). 
For a given value of q~ one finds 

J(s¢)  = {[I(s)l~.. P(Tvs12))l (s~) 
p(s12) = [1](s~). q(s~) 

~l(J(s~)) = [{?(r)}~, P(T,r~2)]l(r~) 
P = ~ ( p ) .  

The combination of all sections yields information 
on {?(r)}~ which takes the following form" 

P )  = ~ l {  7}2(y)p(T~(r12- y))da~ ({7}~, 

y auxiliary variable in the plane defined by r~ and r2, 
a N surface element at the end of vector y. 

This function differs from a convolution in tha t  it  
contains the tensor T~. The effect of P on {?}~. is a 
'smearing' perpendicular to the radius vector. The 
extent of this 'smearing' is determined by the integral 
width of Q which according to Fourier transform 
theory, is reciprocal to the integral width of q 

f oe Q(r2)dr2 
_oo q(O) 

Q(O) l ~ q(s~)ds~ 
, - - O D  

Knowing the width of q one can estimate the effect 
of the finite beam height on {7}2 and decide whether 
its elimination is worth while. 

Because of the presence of the tensor T~ (which is 
a function of the direction of r12), a separation of 
{?}~. and P by means of Fourier transformation is 
impossible. A solution of this problem would be to 
introduce an auxiliary function G which changes P 
into a radially symmetrical function and thus 
eliminates the tensor T~. 

Taking 
i}l(g)=G 

one finds 

~l(g(sl)J(sx))=G(r~) ,~l(J(s~))  
= G(r~), [{7(r)}~ ,(~(r~). QCr2))]l 

= r{~,(r)}~ • ( a ( n ) .  Q(r2)) l~ • 

g should now be chosen such that  the product g .  Q 
is independent of q~: 

G(rl). Q(r2) = <G(rl). Q(r2) >~= F(r19.) 
where 

1 12~ 

which means 

g(sl).q(s2) = <g(sl).q(s2)>~=f(sl~.) 
2 ' = ~ ( f ) .  

(Note that  the function g defined as above is not 
identical with that  defined by Kratky,  Pored & 
Kahovee, 1951). 

This equation has a non-trivial solution only when 

q(s~.)=b exp (-]cs~) , 



in which case 
g(sl)=a exp (-k8~) 

f(s12)=ab exp (--]C8129.) 

Since this equation cam~ot be solved for an arbi t rary  
function q, one can only t ry  to find a good approxima- 
t ion for 

g(s~).q(s~) _ (g(sl). q(s~))~. 

This could be achieved by defining g so tha t  

f (g(s~). q(s~)- <g(s~)q(s~.)>~)2d~ = Mm. 

(da surface element) for 

l ~ g(s~) d8~ = const. 
--CO 

This is a problem which could be solved by the 
calculus of variations. This definition of the best 
possible g for a given q seems to be the most correct 
since, according to Fourier theory, 

On the other hand, if the experimental conditions 
are such tha t  the beam height cannot be regarded as 
infinite one should t ry  to choose the slit system so 
tha t  q approaches a Gaussian distribution. In  this 
case one finds the best value for k from 

I ~ ( q - a  exp [-ks~]Pds~,=Min. 
- - 0 0  

since, here again, this approximation is as good in 
real space as in reciprocal space; in this case k is 
given by 

4k I~_ 8~q(sp.) exp (-ks~)d8~, 
= 1 ;  ~00 

I q(s~) (-ks~)d8~ e x p  

~ o o  

thus 
g ~ exp ( -ks~)  

f ~ exp (-k8~2). 

After a good approximation for g and f has been 
found the correction for finite beam height proceeds 
as follows: 

~1 (g(s~).J(sv)) = [(7}2 * F]~ (r~). 

The sections are combined to give 

A two-dimensional Fourier transform of this function 
yields 

~2({7}~*F)=[T]~.f 

from which f is eliminated by division. 

A C 1 7  - -  1 0  
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For radially symmetrical  intensi ty distributions, 
one finds 

q~l(g(s)J(8)) = {7}9. , F  

~2({7}2 * F) = 1(8).f(8) (7) 
o r  

i~(g(8)J(~)) = 7 , F  
~3(y * F) =1(8).f(8). (8) 

A P P E N D I X  

The two methods given in § 3 can be verified in the 
following way: 

J(s) = 2 I(l/(s2+y2))dy 
o 

(see Guinier & Fournet,  1955, p. 114). 

A combination of equations (3) and (4) postulates 

4 1( (s2+y2))dy cos 2xcrsds 
0 

S = 2~ ~I(s)Jo(2~:rs) ds.  (9) 
0 

On the left-hand side, we introduce z=l/(82+y2 ) 
and interchange the order of integration, which yields: 

l °° S* cos 2~rs  
4 o zl(z) dz o i/(z 2_s2 i ds.  

We now consider the integral in s: the substi tution 
s = z  cos ~0 yields 

f,#2 -~ Jo( 2 zrz ) cos (27~rz cos 99)d~ = z 
*)0 

which confirms equation (9). 
A combination of equations (5) and (6) postulates: 

4ze I(l/(s~.-t-ye))dyJo(2z~rs)ds 
0 

2 sI(s) sin 2z~rs.ds (10) N _ _  

- -  r o 

Proceeding as above, we find for the left-hand side: 

~Jo(2~rs) 
4~ ~o zZ(z)dz ~o ~ - - ~ )  8d~ 

and for the integral in 8: 

l ~/~ Jo (2zrz cos ~)z cos ~ d~0. 
0 

This is a form of Sonine's first finite integral 
(see Watson, 1952, p. 373) and yields 

sin 27~rz 
l/(z/dr)J½ (27erz) - 

2z r  

which confirms equation (10). 
The correction for finite slit height and radially 
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symmetrical intensity distribution (§ 4, equations (7) 
and (8)) is verified as follows: 

J(8) = 2 i(1/(8~+y~.))q(y)dy. 
0 

Equation (7) postulates 

4:0 g(s) o I(1/'(s2+Y~))q(y)dy cos 2~rsds 

= 2~ sf(s)I(s)Jo(2~rs)ds. (11) 
o 

Proceeding as in the ease of equation (9) one finds 
~or the left-hand side 

1¢o fl  g(s ) cos 2~rs ds . ~z(~)d~ .q(V(~-~))  V(~_~-- -~) 
0 

The integral in s yields 

l ~'12g(z cos q))q(z sin (~) cos (27~rz cos ~)d(p. 
o 

If, as postulated in § 4, 

g(z cos q~)q(z sin ~)=f(z) 

this integral yields 

½gf(z)Jo (2~rz) 

which confirms equation (7). 
Equation (8) is easily verified by combining the 

above procedure with that  adopted for equation (10). 

I am indebted to Dr H. Tompa for stimulating 
discussions during the course of this work. 
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Diffraction studies of crystals locate the centroids or maxima of the distributions of atoms under- 
going thermal motion, and separations computed from these positions cannot, in general, be inter- 
preted directly as interatomic distances. Methods are presented for calculating the mean separation 
of two atoms given the isotropic or a~isotropic temperature factor coefficients. In order to apply 
these methods, it is necessary that the joint distribution which describes the motion of the atoms 
in question be known or assumed. 

The atomic coordinates resulting from a crystal struc- 
lure analysis represent the maximum or the centroid 
of a distribution of scattering density arising from the 
combined effects of atomic structure and thermal 
displacement. I t  has been common practice to compute 
an interatomic distance as the distance between a 
pair of these 'atomic positions'. With improvement ia 
the accuracy of experimental techniques, it has be- 

* Operated for the U.S. Atomic Energy Commission by 
Union Carbide Corporation. 

come clear that  this estimate is valid only in the limit 
of negligibly small thermal displacements. For exam- 
ple, a discrepancy between spectroscopic and diffrac- 
tion estimates of the C-C distance in benzene has been 
shown by Cox, Cruickshank & Smith (1955, 1958) to 
arise from the large rotatory oscillation of this molecule 
about its hexad axis. Cruickshank (1956a, 1961) has 
discussed in detail the effect of the oscillations of a 
rigid molecule on the positions of maxima in a density 
distribution, and consequently on the estimation of 
bond lengths. The present authors (Busing & Levy, 


